——异步小编
William Chen是Quora的一位数据科学家,在那里他协助Quora发展壮大,为这个世界分享知识。在拿到哈佛大学的统计和应用数学双学位之后,他直接成了一位数据科学家,也是世界上第一批在校期间接受了完整的数据科学课程并且最终在毕业之后直接加入了数据科学领域的学生之一。全职加入Quora之前,他曾经在Quora和Etsy做数据实习生。他很喜欢讲述各种与数据有关的故事,并且也在Quora上广泛地分享他的知识。
William也是的联合作者之一。
您能告诉我们一些一路走来进入数据科学领域的故事吗?
在哈佛大学的第一年,我开始想要学习数学,不过最终选择了Joe Blitzstein的统计110课程。那门课改变了我思考不确定性问题以及日常事务的方式,同时让我明白了直觉与沟通的价值。在那门课的影响下,我在第二年将专业转为统计学。
大二的时候,我开始四处寻找实习机会,期待能将自己的一些概率和统计知识用起来。我在当时主要只拥有理论知识,对于应用开发实在知识有限,当时我惊喜于Etsy主动邀请我加入他们公司实习,职位是一名数据分析师。这是我第一次尝试使用数据来提高公司业务——实习在各个方面都帮助了我成长,磨练了我的技术,让我成了一个初露头角的数据科学家。
Etsy是一个基于数据指标的公司,我能够清楚地看到并且理解Etsy公司的最重要核心业务主要是依赖于A/B测试的一些算法。大家在邮件中频繁地交流着各种统计知识,并且让我能够了解各种常见技术,知道以数据指标为业务驱动的科技公司的一些潜在软肋。
Etsy的数据展示效果很漂亮(D3的仪表板和高亮幻灯片桌面)。在那样一个重视可视化的公司环境下,我自学了ggplot2,开始制作自己的图片。在那段实习中我学到了很多东西——这是我作为数据科学家职业的第一步。
在Etsy的实习结束后,我开始了自己的大三生涯。那一年,我回到哈佛,成了一名统计110课的助教(相当于协助本科生教学的助理)。
通过帮助人们解决他们遇到的概率问题,我意识到教授统计学能够帮助我改善我的沟通能力和讲故事的能力。这也很有趣,并且我也更习惯去与别人分享自己的所学。
如果没有足够强大的编程知识供你实现自己的统计想法,你可以做的东西就会受到很多的限制。
大三那一年,我也开始上更多的计算机课程,我意识到了它们在数据科学中的重要作用。如果没有足够强大的编程知识供你实现自己的统计想法,你可以做的东西就会受到很多的限制。我意识到要想成为一名成功的数据科学家,统计和计算机两者都是不可或缺的,所以我通过上与这两者有关系的课程去尝试成为一名统计与计算机交叉领域的专家。